Saturday, 16 August 2014

Design Pattern Guide-2nd part

Design Pattern Guide-2nd part

Prototype Pattern

Prototype pattern refers to creating duplicate object while keeping performance in mind. This type of design pattern comes under creational pattern as this pattern provides one of the best way to create an object.
This pattern involves implementing a prototype interface which tells to create a clone of the current object. This pattern is used when creation of object directly is costly. For example, a object is to be created after a costly database operation. We can cache the object, returns its clone on next request and update the database as as and when needed thus reducing database calls.

Implementation

We're going to create an abstract class Shape and concrete classes extending the Shape class. A class ShapeCache is defined as a next step which stores shape objects in a Hashtable and returns their clone when requested.
PrototypPatternDemo, our demo class will use ShapeCache class to get a Shape object.
Prototype Pattern UML Diagram

Step 1

Create an abstract class implementing Clonable interface.
Shape.java
public abstract class Shape implements Cloneable {
   
   private String id;
   protected String type;
   
   abstract void draw();
   
   public String getType(){
      return type;
   }
   
   public String getId() {
      return id;
   }
   
   public void setId(String id) {
      this.id = id;
   }
   
   public Object clone() {
      Object clone = null;
      try {
         clone = super.clone();
      } catch (CloneNotSupportedException e) {
         e.printStackTrace();
      }
      return clone;
   }
}

Step 2

Create concrete classes extending the above class.
Rectangle.java
public class Rectangle extends Shape {

   public Rectangle(){
     type = "Rectangle";
   }

   @Override
   public void draw() {
      System.out.println("Inside Rectangle::draw() method.");
   }
}
Square.java
public class Square extends Shape {

   public Square(){
     type = "Square";
   }

   @Override
   public void draw() {
      System.out.println("Inside Square::draw() method.");
   }
}
Circle.java
public class Circle extends Shape {

   public Circle(){
     type = "Circle";
   }

   @Override
   public void draw() {
      System.out.println("Inside Circle::draw() method.");
   }
}

Step 3

Create a class to get concreate classes from database and store them in a Hashtable.
ShapeCache.java
import java.util.Hashtable;

public class ShapeCache {
 
   private static Hashtable<String, Shape> shapeMap 
      = new Hashtable<String, Shape>();

   public static Shape getShape(String shapeId) {
      Shape cachedShape = shapeMap.get(shapeId);
      return (Shape) cachedShape.clone();
   }

   // for each shape run database query and create shape
   // shapeMap.put(shapeKey, shape);
   // for example, we are adding three shapes
   public static void loadCache() {
      Circle circle = new Circle();
      circle.setId("1");
      shapeMap.put(circle.getId(),circle);

      Square square = new Square();
      square.setId("2");
      shapeMap.put(square.getId(),square);

      Rectangle rectangle = new Rectangle();
      rectangle.setId("3");
      shapeMap.put(rectangle.getId(),rectangle);
   }
}

Step 4

PrototypePatternDemo uses ShapeCache class to get clones of shapes stored in a Hashtable.
PrototypePatternDemo.java
public class PrototypePatternDemo {
   public static void main(String[] args) {
      ShapeCache.loadCache();

      Shape clonedShape = (Shape) ShapeCache.getShape("1");
      System.out.println("Shape : " + clonedShape.getType());  

      Shape clonedShape2 = (Shape) ShapeCache.getShape("2");
      System.out.println("Shape : " + clonedShape2.getType());  

      Shape clonedShape3 = (Shape) ShapeCache.getShape("3");
      System.out.println("Shape : " + clonedShape3.getType());  
   }
}

Step 5

Verify the output.
Shape : Circle
Shape : Square
Shape : Rectangle

Adapter Pattern

Adapter pattern works as a bridge between two incompatible interfaces. This type of design pattern comes under structural pattern as this pattern combines the capability of two independent interfaces.
This pattern involves a single class which is responsible to join functionalities of independent or incompatible interfaces. A real life example could be a case of card reader which acts as an adapter between memory card and a laptop. You plugins the memory card into card reader and card reader into the laptop so that memory card can be read via laptop.
We are demonstrating use of Adapter pattern via following example in which an audio player device can play mp3 files only and wants to use an advanced audio player capable of playing vlc and mp4 files.

Implementation

We've an interface MediaPlayer interface and a concrete class AudioPlayer implementing theMediaPlayer interface. AudioPlayer can play mp3 format audio files by default.
We're having another interface AdvancedMediaPlayer and concrete classes implementing theAdvancedMediaPlayer interface.These classes can play vlc and mp4 format files.
We want to make AudioPlayer to play other formats as well. To attain this, we've created an adapter class MediaAdapter which implements the MediaPlayer interface and uses AdvancedMediaPlayerobjects to play the required format.
AudioPlayer uses the adapter class MediaAdapter passing it the desired audio type without knowing the actual class which can play the desired format. AdapterPatternDemo, our demo class will useAudioPlayer class to play various formats.
Adapter Pattern UML Diagram

Step 1

Create interfaces for Media Player and Advanced Media Player.
MediaPlayer.java
public interface MediaPlayer {
   public void play(String audioType, String fileName);
}
AdvancedMediaPlayer.java
public interface AdvancedMediaPlayer { 
   public void playVlc(String fileName);
   public void playMp4(String fileName);
}

Step 2

Create concrete classes implementing the AdvancedMediaPlayer interface.
VlcPlayer.java
public class VlcPlayer implements AdvancedMediaPlayer{
   @Override
   public void playVlc(String fileName) {
      System.out.println("Playing vlc file. Name: "+ fileName);  
   }

   @Override
   public void playMp4(String fileName) {
      //do nothing
   }
}
Mp4Player.java
public class Mp4Player implements AdvancedMediaPlayer{

   @Override
   public void playVlc(String fileName) {
      //do nothing
   }

   @Override
   public void playMp4(String fileName) {
      System.out.println("Playing mp4 file. Name: "+ fileName);  
   }
}

Step 3

Create adapter class implementing the MediaPlayer interface.
MediaAdapter.java
public class MediaAdapter implements MediaPlayer {

   AdvancedMediaPlayer advancedMusicPlayer;

   public MediaAdapter(String audioType){
      if(audioType.equalsIgnoreCase("vlc") ){
         advancedMusicPlayer = new VlcPlayer();   
      } else if (audioType.equalsIgnoreCase("mp4")){
         advancedMusicPlayer = new Mp4Player();
      } 
   }

   @Override
   public void play(String audioType, String fileName) {
      if(audioType.equalsIgnoreCase("vlc")){
         advancedMusicPlayer.playVlc(fileName);
      }else if(audioType.equalsIgnoreCase("mp4")){
         advancedMusicPlayer.playMp4(fileName);
      }
   }
}

Step 4

Create concrete class implementing the MediaPlayer interface.
AudioPlayer.java
public class AudioPlayer implements MediaPlayer {
   MediaAdapter mediaAdapter; 

   @Override
   public void play(String audioType, String fileName) {  

      //inbuilt support to play mp3 music files
      if(audioType.equalsIgnoreCase("mp3")){
         System.out.println("Playing mp3 file. Name: "+ fileName);   
      } 
      //mediaAdapter is providing support to play other file formats
      else if(audioType.equalsIgnoreCase("vlc") 
         || audioType.equalsIgnoreCase("mp4")){
         mediaAdapter = new MediaAdapter(audioType);
         mediaAdapter.play(audioType, fileName);
      }
      else{
         System.out.println("Invalid media. "+
            audioType + " format not supported");
      }
   }   
}

Step 5

Use the AudioPlayer to play different types of audio formats.
AdapterPatternDemo.java
public class AdapterPatternDemo {
   public static void main(String[] args) {
      AudioPlayer audioPlayer = new AudioPlayer();

      audioPlayer.play("mp3", "beyond the horizon.mp3");
      audioPlayer.play("mp4", "alone.mp4");
      audioPlayer.play("vlc", "far far away.vlc");
      audioPlayer.play("avi", "mind me.avi");
   }
}

Step 6

Verify the output.
Playing mp3 file. Name: beyond the horizon.mp3
Playing mp4 file. Name: alone.mp4
Playing vlc file. Name: far far away.vlc
Invalid media. avi format not supported

Bridge Pattern

Bridge is used where we need to decouple an abstraction from its implementation so that the two can vary independently. This type of design pattern comes under structural pattern as this pattern decouples implementation class and abstract class by providing a bridge structure between them.
This pattern involves an interface which acts as a bridge which makes the functionality of concrete classes independent from interface implementer classes. Both types of classes can be altered structurally without affecting each other.
We are demonstrating use of Bridge pattern via following example in which a circle can be drawn in different colors using same abstract class method but different bridge implementer classes.

Implementation

We've an interface DrawAPI interface which is acting as a bridge implementer and concrete classesRedCircleGreenCircle implementing the DrawAPI interface. Shape is an abstract class and will use object of DrawAPIBridgePatternDemo, our demo class will use Shape class to draw different colored circle.
Bridge Pattern UML Diagram

Step 1

Create bridge implementer interface.
DrawAPI.java
public interface DrawAPI {
   public void drawCircle(int radius, int x, int y);
}

Step 2

Create concrete bridge implementer classes implementing the DrawAPI interface.
RedCircle.java
public class RedCircle implements DrawAPI {
   @Override
   public void drawCircle(int radius, int x, int y) {
      System.out.println("Drawing Circle[ color: red, radius: "
         + radius +", x: " +x+", "+ y +"]");
   }
}
GreenCircle.java
public class GreenCircle implements DrawAPI {
   @Override
   public void drawCircle(int radius, int x, int y) {
      System.out.println("Drawing Circle[ color: green, radius: "
         + radius +", x: " +x+", "+ y +"]");
   }
}

Step 3

Create an abstract class Shape using the DrawAPI interface.
Shape.java
public abstract class Shape {
   protected DrawAPI drawAPI;
   protected Shape(DrawAPI drawAPI){
      this.drawAPI = drawAPI;
   }
   public abstract void draw(); 
}

Step 4

Create concrete class implementing the Shape interface.
Circle.java
public class Circle extends Shape {
   private int x, y, radius;

   public Circle(int x, int y, int radius, DrawAPI drawAPI) {
      super(drawAPI);
      this.x = x;  
      this.y = y;  
      this.radius = radius;
   }

   public void draw() {
      drawAPI.drawCircle(radius,x,y);
   }
}

Step 5

Use the Shape and DrawAPI classes to draw different colored circles.
BridgePatternDemo.java
public class BridgePatternDemo {
   public static void main(String[] args) {
      Shape redCircle = new Circle(100,100, 10, new RedCircle());
      Shape greenCircle = new Circle(100,100, 10, new GreenCircle());

      redCircle.draw();
      greenCircle.draw();
   }
}

Step 6

Verify the output.
Drawing Circle[ color: red, radius: 10, x: 100, 100]
Drawing Circle[  color: green, radius: 10, x: 100, 100]

Filter/Criteria Pattern

Filter pattern or Criteria pattern is a design pattern that enables developers to filter a set of objects, using different criteria, chaining them in a decoupled way through logical operations. This type of design pattern comes under structural pattern as this pattern is combining multiple criteria to obtain single criteria.

Implementation

We're going to create a Person object, Criteria interface and concrete classes implementing this interface to filter list of Person objects. CriteriaPatternDemo, our demo class uses Criteria objects to filter List of Person objects based on various criteria and their combinations.
Filter Pattern UML Diagram

Step 1

Create a class on which criteria is to be applied.
Person.java
public class Person {
 
   private String name;
   private String gender;
   private String maritalStatus;

   public Person(String name,String gender,String maritalStatus){
      this.name = name;
      this.gender = gender;
      this.maritalStatus = maritalStatus;  
   }

   public String getName() {
      return name;
   }
   public String getGender() {
      return gender;
   }
   public String getMaritalStatus() {
      return maritalStatus;
   } 
}

Step 2

Create an interface for Criteria.
Criteria.java
import java.util.List;

public interface Criteria {
   public List<Person> meetCriteria(List<Person> persons);
}

Step 3

Create concrete classes implementing the Criteria interface.
CriteriaMale.java
import java.util.ArrayList;
import java.util.List;

public class CriteriaMale implements Criteria {

   @Override
   public List<Person> meetCriteria(List<Person> persons) {
      List<Person> malePersons = new ArrayList<Person>(); 
      for (Person person : persons) {
         if(person.getGender().equalsIgnoreCase("MALE")){
            malePersons.add(person);
         }
      }
      return malePersons;
   }
}
CriteriaFemale.java
import java.util.ArrayList;
import java.util.List;

public class CriteriaFemale implements Criteria {

   @Override
   public List<Person> meetCriteria(List<Person> persons) {
      List<Person> femalePersons = new ArrayList<Person>(); 
      for (Person person : persons) {
         if(person.getGender().equalsIgnoreCase("FEMALE")){
            femalePersons.add(person);
         }
      }
      return femalePersons;
   }
}
CriteriaSingle.java
import java.util.ArrayList;
import java.util.List;

public class CriteriaSingle implements Criteria {

   @Override
   public List<Person> meetCriteria(List<Person> persons) {
      List<Person> singlePersons = new ArrayList<Person>(); 
      for (Person person : persons) {
         if(person.getMaritalStatus().equalsIgnoreCase("SINGLE")){
            singlePersons.add(person);
         }
      }
      return singlePersons;
   }
}
AndCriteria.java
import java.util.List;

public class AndCriteria implements Criteria {

   private Criteria criteria;
   private Criteria otherCriteria;

   public AndCriteria(Criteria criteria, Criteria otherCriteria) {
      this.criteria = criteria;
      this.otherCriteria = otherCriteria; 
   }

   @Override
   public List<Person> meetCriteria(List<Person> persons) {
      List<Person> firstCriteriaPersons = criteria.meetCriteria(persons);  
      return otherCriteria.meetCriteria(firstCriteriaPersons);
   }
}
OrCriteria.java
import java.util.List;

public class AndCriteria implements Criteria {

   private Criteria criteria;
   private Criteria otherCriteria;

   public AndCriteria(Criteria criteria, Criteria otherCriteria) {
      this.criteria = criteria;
      this.otherCriteria = otherCriteria; 
   }

   @Override
   public List<Person> meetCriteria(List<Person> persons) {
      List<Person> firstCriteriaItems = criteria.meetCriteria(persons);
      List<Person> otherCriteriaItems = otherCriteria.meetCriteria(persons);

      for (Person person : otherCriteriaItems) {
         if(!firstCriteriaItems.contains(person)){
         firstCriteriaItems.add(person);
         }
      } 
      return firstCriteriaItems;
   }
}

Step4

Use different Criteria and their combination to filter out persons.
CriteriaPatternDemo.java
public class CriteriaPatternDemo {
   public static void main(String[] args) {
      List<Person> persons = new ArrayList<Person>();

      persons.add(new Person("Robert","Male", "Single"));
      persons.add(new Person("John","Male", "Married"));
      persons.add(new Person("Laura","Female", "Married"));
      persons.add(new Person("Diana","Female", "Single"));
      persons.add(new Person("Mike","Male", "Single"));
      persons.add(new Person("Bobby","Male", "Single"));

      Criteria male = new CriteriaMale();
      Criteria female = new CriteriaFemale();
      Criteria single = new CriteriaSingle();
      Criteria singleMale = new AndCriteria(single, male);
      Criteria singleOrFemale = new OrCriteria(single, female);

      System.out.println("Males: ");
      printPersons(male.meetCriteria(persons));

      System.out.println("\nFemales: ");
      printPersons(female.meetCriteria(persons));

      System.out.println("\nSingle Males: ");
      printPersons(singleMale.meetCriteria(persons));

      System.out.println("\nSingle Or Females: ");
      printPersons(singleOrFemale.meetCriteria(persons));
   }

   public static void printPersons(List<Person> persons){
      for (Person person : persons) {
         System.out.println("Person : [ Name : " + person.getName() 
            +", Gender : " + person.getGender() 
            +", Marital Status : " + person.getMaritalStatus()
            +" ]");
      }
   }      
}

Step 5

Verify the output.
Males: 
Person : [ Name : Robert, Gender : Male, Marital Status : Single ]
Person : [ Name : John, Gender : Male, Marital Status : Married ]
Person : [ Name : Mike, Gender : Male, Marital Status : Single ]
Person : [ Name : Bobby, Gender : Male, Marital Status : Single ]

Females: 
Person : [ Name : Laura, Gender : Female, Marital Status : Married ]
Person : [ Name : Diana, Gender : Female, Marital Status : Single ]

Single Males: 
Person : [ Name : Robert, Gender : Male, Marital Status : Single ]
Person : [ Name : Mike, Gender : Male, Marital Status : Single ]
Person : [ Name : Bobby, Gender : Male, Marital Status : Single ]

Single Or Females: 
Person : [ Name : Robert, Gender : Male, Marital Status : Single ]
Person : [ Name : Diana, Gender : Female, Marital Status : Single ]
Person : [ Name : Mike, Gender : Male, Marital Status : Single ]
Person : [ Name : Bobby, Gender : Male, Marital Status : Single ]
Person : [ Name : Laura, Gender : Female, Marital Status : Married ]

Composite Pattern

Composite pattern is used where we need to treat a group of objects in similar way as a single object. Composite pattern composes objects in term of a tree structure to represent part as well as whole hierarchy . This type of design pattern comes under structural pattern as this pattern creates a tree structure of group of objects.
This pattern creates a class contains group of its own objects. This class provides ways to modify its group of same objects.
We are demonstrating use of Composite pattern via following example in which show employees hierarchy of an organization.

Implementation

We've a class Employee which acts as composite pattern actor class. CompositePatternDemo, our demo class will use Employee class to add department level hierarchy and print all employees.
Composite Pattern UML Diagram

Step 1

Create Employee class having list of Employee objects.
Employee.java
import java.util.ArrayList;
import java.util.List;

public class Employee {
   private String name;
   private String dept;
   private int salary;
   private List<Employee> subordinates;

   // constructor
   public Employee(String name,String dept, int sal) {
      this.name = name;
      this.dept = dept;
      this.salary = sal;
      subordinates = new ArrayList<Employee>();
   }

   public void add(Employee e) {
      subordinates.add(e);
   }

   public void remove(Employee e) {
      subordinates.remove(e);
   }

   public List<Employee> getSubordinates(){
     return subordinates;
   }

   public String toString(){
      return ("Employee :[ Name : "+ name 
      +", dept : "+ dept + ", salary :"
      + salary+" ]");
   }   
}

Step 2

Use the Employee class to create and print employee hierarchy.
CompositePatternDemo.java
public class CompositePatternDemo {
   public static void main(String[] args) {
      Employee CEO = new Employee("John","CEO", 30000);

      Employee headSales = new Employee("Robert","Head Sales", 20000);

      Employee headMarketing = new Employee("Michel","Head Marketing", 20000);

      Employee clerk1 = new Employee("Laura","Marketing", 10000);
      Employee clerk2 = new Employee("Bob","Marketing", 10000);

      Employee salesExecutive1 = new Employee("Richard","Sales", 10000);
      Employee salesExecutive2 = new Employee("Rob","Sales", 10000);

      CEO.add(headSales);
      CEO.add(headMarketing);

      headSales.add(salesExecutive1);
      headSales.add(salesExecutive2);

      headMarketing.add(clerk1);
      headMarketing.add(clerk2);

      //print all employees of the organization
      System.out.println(CEO); 
      for (Employee headEmployee : CEO.getSubordinates()) {
         System.out.println(headEmployee);
         for (Employee employee : headEmployee.getSubordinates()) {
            System.out.println(employee);
         }
      }  
   }
}

Step 3

Verify the output.
Employee :[ Name : John, dept : CEO, salary :30000 ]
Employee :[ Name : Robert, dept : Head Sales, salary :20000 ]
Employee :[ Name : Richard, dept : Sales, salary :10000 ]
Employee :[ Name : Rob, dept : Sales, salary :10000 ]
Employee :[ Name : Michel, dept : Head Marketing, salary :20000 ]
Employee :[ Name : Laura, dept : Marketing, salary :10000 ]
Employee :[ Name : Bob, dept : Marketing, salary :10000 ]

Decorator Pattern

Decorator pattern allows to add new functionality an existing object without altering its structure. This type of design pattern comes under structural pattern as this pattern acts as a wrapper to existing class.
This pattern creates a decorator class which wraps the original class and provides additional functionality keeping class methods signature intact.
We are demonstrating use of Decorator pattern via following example in which we'll decorate a shape with some color without alter shape class.

Implementation

We're going to create a Shape interface and concrete classes implementing the Shape interface. We then create a abstract decorator class ShapeDecorator implementing the Shape interface and havingShape object as its instance variable.
RedShapeDecorator is concrete class implementing ShapeDecorator.
DecoratorPatternDemo, our demo class will use RedShapeDecorator to decorate Shape objects.
Decorator Pattern UML Diagram

Step 1

Create an interface.
Shape.java
public interface Shape {
   void draw();
}

Step 2

Create concrete classes implementing the same interface.
Rectangle.java
public class Rectangle implements Shape {

   @Override
   public void draw() {
      System.out.println("Shape: Rectangle");
   }
}
Circle.java
public class Circle implements Shape {

   @Override
   public void draw() {
      System.out.println("Shape: Circle");
   }
}

Step 3

Create abstract decorator class implementing the Shape interface.
ShapeDecorator.java
public abstract class ShapeDecorator implements Shape {
   protected Shape decoratedShape;

   public ShapeDecorator(Shape decoratedShape){
      this.decoratedShape = decoratedShape;
   }

   public void draw(){
      decoratedShape.draw();
   } 
}

Step 4

Create concrete decorator class extending the ShapeDecorator class.
RedShapeDecorator.java
public class RedShapeDecorator extends ShapeDecorator {

   public RedShapeDecorator(Shape decoratedShape) {
      super(decoratedShape);  
   }

   @Override
   public void draw() {
      decoratedShape.draw();        
      setRedBorder(decoratedShape);
   }

   private void setRedBorder(Shape decoratedShape){
      System.out.println("Border Color: Red");
   }
}

Step 5

Use the RedShapeDecorator to decorate Shape objects.
DecoratorPatternDemo.java
public class DecoratorPatternDemo {
   public static void main(String[] args) {

      Shape circle = new Circle();

      Shape redCircle = new RedShapeDecorator(new Circle());

      Shape redRectangle = new RedShapeDecorator(new Rectangle());
      System.out.println("Circle with normal border");
      circle.draw();

      System.out.println("\nCircle of red border");
      redCircle.draw();

      System.out.println("\nRectangle of red border");
      redRectangle.draw();
   }
}

Step 6

Verify the output.
Circle with normal border
Shape: Circle

Circle of red border
Shape: Circle
Border Color: Red

Rectangle of red border
Shape: Rectangle
Border Color: Red

No comments:

Post a Comment